III B.TECH- II SEMESTER MECHANICAL MEASUREMENTS

Course Code: ME6T1 Credits: 3
Lecture: 3 Periods/week Internal assessment: 30 marks
Tutorial: 1 Period /week Semester end examination: 70 marks

COURSE OBJECTIVES:

- Demonstrate fundamentals, basic procedures for operating, testing, calibration and the characteristics of an instrument.
- Select different types of instruments their construction details, working principle which are used to measure different parameters like displacement, pressure, temperature, level, flow, speed, vibration etc.
- Know the construction details, working principle and mounting of strain gauges for measurement of bending, compressive and tensile forces.
- Interpret working principle of various instruments used for measurement of humidity, torque and power.
- Illustrate various basic reasons for pollution, methods used for controlling pollution.

COURSE OUTCOMES:

At the end of course the students will be able to:

- 1. Identify the basic elements, configuration, errors and characteristics of an instrument.
- 2. Describe the instruments for the measurement of displacement, temperature, pressure, fluid flow, level.
- 3. Explain the instruments used for the measurement of speed, acceleration and vibration.
- 4. Discuss the measurement of force, torque, power & applications of strain gauges.
- 5. Discuss about the humidity measurement equipment, Air pollution sampling & control.

Pre Requisites: Basic Electrical and Electronics.

UNIT I

DEFINITION:

Basic principles of measurement, measurement systems, generalized configuration and functional descriptions of measuring instruments- examples, static and dynamic performance characteristics, sources of error, classification and elimination of error, calibration procedure.

MEASUREMENT OF DISPLACEMENT:

Theory and construction of various transducers to measure displacement, piezoelectric, inductive, capacitance, resistance, ionization and photo electric transducers,

MEASUREMENT OF TEMPERATURE: Classification, ranges, various principles of measurement- expansion, electrical resistance, thermistor, thermocouple, pyrometers temperature indicators.

UNIT II

MEASUREMENT OF PRESSURE:

Units- classification- different principles used, manometers, piston, bourdon the pressure gauges, bellows- diaphragm gauges, low pressure measurement- thermal conductivity gauges, ionization pressure gauges, Mcleod pressure gauge.

MEASUREMENT OF LEVEL:

Direct method- Indirect methods- capacitive, ultrasonic, magnetic, cryogenic fuel level indicators-bubbler level indicators

FLOW MEASUREMENT: Rota meter, magnetic, ultrasonic, turbine flow meter, hot-wire anemometer, Laser Doppler Anemometer (LDA).

UNIT III

MEASUREMENT OF SPEED:

Mechanical tachometers, electrical tachometers, stroboscope, noncontact type of tachometer **MEASUREMENT OF ACCELERATION AND VIBRATION**: Different simple instruments, principles of seismic instruments- vibro meter and accelerometer using this principle.

UNIT IV

MEASUREMENT OF FORCE, TORQUE AND POWER: Elastic force meters, load cells ,torsion meters, dynamometers

STRESS STRAIN MEASUREMENTS:

Various types of stress and strain measurements- electrical strain gauge-gauge factor, method of usage of resistance strain gauge for determining bending, compressive and tensile strainsusage for measuring torque, strain gauge rosettes.

UNIT V

MEASUREMENT OF HUMIDITY:

Moisture content of gases, sling psychomotor, absorption psychomotor, Dew point meter.

MEASUREMENT OF POLLUTION CONTROL: Introduction- Air pollution, Metrological aspects, air pollution sampling and measurement -Air pollution control methods and equipment, control of specific gaseous pollutants.

Learning Resources

Text books:

- 1. Mechanical measurements, by Thomas G. Beckwith, <u>Nelson Lewis Buck</u>, <u>Roy D.</u> Marangoni, Addison-Wesley Pub. Co
- 2. Mechanical Measurements, by Beckwith, Marangoni, Linehard, PHI, PE
- 3. Environmental pollution control Engineering, by Rao. C.S, New Age International Pvt. Ltd., 2nd Edition, 2006.

Reference books:

- 1. Measurement systems: Application and design, by Doeblin Earnest. O.Manik and Dhanesh TMH
- 2. Experimental Methods for Engineers by Holman, McGraw Hill
- 3. Mechanical Measurements and control, by Dr. D.S.Kumar, Metropolitan Book Co. Pvt. Ltd.
- 4. Instrumentation Measurement and Analysis, by B.C.Nakra and K.K.Chaudhry, Mc Graw Hill Education (India) Private Limited.